Relations

Lecture 12

Robb T. Koether

Hampden-Sydney College

Mon, Apr 3, 2017

Outline

- Relations
- Properties of Relations
 - Reflexive
 - Symmetric
 - Transitive
 - Antisymmetric
- Equivalence Relations

Outline

- Relations
- Properties of Relations
 - Reflexive
 - Symmetric
 - Transitive
 - Antisymmetric
- 3 Equivalence Relations

Cartesian Product

Definition (Cartesian Product)

Given two sets A and B, the Cartesian product $A \times B$ is the set

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

• The definition can be extended to any number of sets:

$$\textbf{A}_1 \times \textbf{A}_2 \times \cdots \times \textbf{A}_n = \{(\textbf{a}_1, \textbf{a}_2, \dots, \textbf{a}_n) \mid \textbf{a}_i \in \textbf{A}_i\}.$$

Relations

Definition (Relation)

Given two sets A and B, a relation from A to B is a subset of $A \times B$. If A and B are the same set, then we say that the relation is on the set A.

• The relation is the set of all the pairs of elements (a, b) from $A \times B$ such that a has the relationship to b.

Notation

• If we give the relation a name, for example *R*, then we might write

aRb

to mean $(a, b) \in R$.

• We often use the generic symbol \sim and write $a \sim b$.

Example

Example (Relation)

- Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{6, 7, 8, 9, 10\}$.
- Let the relation $R \subseteq A \times B$ be the set of ordered pairs (a, b) such that $a \mid b$.
- List the elements of the relation R.

Outline

- Relations
- Properties of Relations
 - Reflexive
 - Symmetric
 - Transitive
 - Antisymmetric
- 3 Equivalence Relations

Definition (The Reflexive Property)

A relation \sim on a set A is reflexive if, for all $a \in A$,

 $a\sim a$.

Definition (The Reflexive Property)

A relation \sim on a set A is reflexive if, for all $a \in A$,

 $a \sim a$.

• The divisibility relation | is reflexive on \mathbb{N} , but it is not reflexive on \mathbb{Z} .

Definition (The Reflexive Property)

A relation \sim on a set A is reflexive if, for all $a \in A$,

 $a \sim a$.

- The divisibility relation | is reflexive on \mathbb{N} , but it is not reflexive on \mathbb{Z} .
- The relation \geq is reflexive on \mathbb{R} .

Definition (The Reflexive Property)

A relation \sim on a set A is reflexive if, for all $a \in A$,

 $a \sim a$.

- The divisibility relation | is reflexive on \mathbb{N} , but it is not reflexive on \mathbb{Z} .
- The relation \geq is reflexive on \mathbb{R} .
- The relation \sim on \mathbb{R} , defined by $a \sim b$ if |a b| < 1, is reflexive.

Definition (The Symmetric Property)

A relation \sim on a set A is symmetric if, for all $a, b \in A$,

$$a \sim b \Longrightarrow b \sim a$$
.

Definition (The Symmetric Property)

A relation \sim on a set A is symmetric if, for all $a, b \in A$,

$$a \sim b \Longrightarrow b \sim a$$
.

 \bullet The divisibility relation is not symmetric on $\mathbb{N}.$

Definition (The Symmetric Property)

A relation \sim on a set A is symmetric if, for all $a, b \in A$,

$$a \sim b \Longrightarrow b \sim a$$
.

- ullet The divisibility relation is not symmetric on $\mathbb N$.
- The relation \geq is not symmetric on \mathbb{R} .

Definition (The Symmetric Property)

A relation \sim on a set A is symmetric if, for all $a, b \in A$,

$$a \sim b \Longrightarrow b \sim a$$
.

- ullet The divisibility relation is not symmetric on $\mathbb N$.
- The relation \geq is not symmetric on \mathbb{R} .
- The relation \sim on \mathbb{R} , defined by $a \sim b$ if |a b| < 1, is symmetric.

Definition (The Transitive Property)

A relation \sim on a set A is transitive if, for all $a, b, c \in A$,

 $(a \sim b \text{ and } b \sim c) \Longrightarrow a \sim c.$

Definition (The Transitive Property)

A relation \sim on a set A is transitive if, for all $a, b, c \in A$,

$$(a \sim b \text{ and } b \sim c) \Longrightarrow a \sim c.$$

• The divisibility relation is transitive on $\mathbb N$ and on $\mathbb Z$.

Definition (The Transitive Property)

A relation \sim on a set A is transitive if, for all $a, b, c \in A$,

$$(a \sim b \text{ and } b \sim c) \Longrightarrow a \sim c.$$

- The divisibility relation is transitive on $\mathbb N$ and on $\mathbb Z$.
- The relation > is transitive on \mathbb{R} .

Definition (The Transitive Property)

A relation \sim on a set A is transitive if, for all $a, b, c \in A$,

$$(a \sim b \text{ and } b \sim c) \Longrightarrow a \sim c.$$

- The divisibility relation is transitive on $\mathbb N$ and on $\mathbb Z$.
- The relation \geq is transitive on \mathbb{R} .
- The relation \sim on \mathbb{R} , defined by $a \sim b$ if |a b| < 1, is not transitive.

Definition (The Antisymmetric Property)

A relation \sim on a set A is antisymmetric if, for all $a, b \in A$,

$$(a \sim b \text{ and } b \sim a) \Longrightarrow a = b.$$

Definition (The Antisymmetric Property)

A relation \sim on a set A is antisymmetric if, for all $a, b \in A$,

$$(a \sim b \text{ and } b \sim a) \Longrightarrow a = b.$$

ullet The divisibility relation is antisymmetric on $\mathbb N$, but not on $\mathbb Z$.

Definition (The Antisymmetric Property)

A relation \sim on a set A is antisymmetric if, for all $a, b \in A$,

$$(a \sim b \text{ and } b \sim a) \Longrightarrow a = b.$$

- The divisibility relation is antisymmetric on \mathbb{N} , but not on \mathbb{Z} .
- The relation \geq is antisymmetric on \mathbb{R} .

Definition (The Antisymmetric Property)

A relation \sim on a set A is antisymmetric if, for all $a, b \in A$,

$$(a \sim b \text{ and } b \sim a) \Longrightarrow a = b.$$

- The divisibility relation is antisymmetric on \mathbb{N} , but not on \mathbb{Z} .
- The relation \geq is antisymmetric on \mathbb{R} .
- The relation \sim on \mathbb{R} , defined by $a \sim b$ if |a b| < 1, is not antisymmetric.

Theorem

If a relation \sim on a set A is reflexive, symmetric, and antisymmetric, then it is the equality, or identity, relation.

Proof.

• Let \sim be a reflexive, symmetric, and antisymmetric relation on a set A.

- ullet Let \sim be a reflexive, symmetric, and antisymmetric relation on a set A.
- By reflexivity, every element has the relation to itself.

- ullet Let \sim be a reflexive, symmetric, and antisymmetric relation on a set A.
- By reflexivity, every element has the relation to itself.
- We will show that every element can have the relation *only* to itself, and thus it must be the identity relation.

- Let ~ be a reflexive, symmetric, and antisymmetric relation on a set A.
- By reflexivity, every element has the relation to itself.
- We will show that every element can have the relation only to itself, and thus it must be the identity relation.
- Let $a, b \in A$ and suppose that $a \sim b$. We will show that a = b.

- ullet Let \sim be a reflexive, symmetric, and antisymmetric relation on a set A.
- By reflexivity, every element has the relation to itself.
- We will show that every element can have the relation only to itself, and thus it must be the identity relation.
- Let $a, b \in A$ and suppose that $a \sim b$. We will show that a = b.
- Then, by symmetry, we must also have $b \sim a$.

- ullet Let \sim be a reflexive, symmetric, and antisymmetric relation on a set A.
- By reflexivity, every element has the relation to itself.
- We will show that every element can have the relation *only* to itself, and thus it must be the identity relation.
- Let $a, b \in A$ and suppose that $a \sim b$. We will show that a = b.
- Then, by symmetry, we must also have $b \sim a$.
- So, by antisymmetry, it follows that a = b.

- ullet Let \sim be a reflexive, symmetric, and antisymmetric relation on a set A.
- By reflexivity, every element has the relation to itself.
- We will show that every element can have the relation only to itself, and thus it must be the identity relation.
- Let $a, b \in A$ and suppose that $a \sim b$. We will show that a = b.
- Then, by symmetry, we must also have $b \sim a$.
- So, by antisymmetry, it follows that a = b.
- ullet Therefore, \sim is the equality (or identity) relation.

A Bogus Theorem

Theorem (Bogus Theorem)

If a relation \sim on a set A is symmetric and transitive, then it is also reflexive.

Proof.

• Let \sim be a symmetric and transitive relation on the set A.

- Let \sim be a symmetric and transitive relation on the set A.
- Let $a \in A$. We will show that $a \sim a$.

- ullet Let \sim be a symmetric and transitive relation on the set A.
- Let $a \in A$. We will show that $a \sim a$.
- Let *b* be any element in *A* such that $a \sim b$.

- Let \sim be a symmetric and transitive relation on the set A.
- Let $a \in A$. We will show that $a \sim a$.
- Let b be any element in A such that $a \sim b$.
- Then, by symmetry, $b \sim a$.

- Let \sim be a symmetric and transitive relation on the set A.
- Let $a \in A$. We will show that $a \sim a$.
- Let b be any element in A such that $a \sim b$.
- Then, by symmetry, $b \sim a$.
- By transitivity, because $a \sim b$ and $b \sim a$, it follows that $a \sim a$.

- Let \sim be a symmetric and transitive relation on the set A.
- Let $a \in A$. We will show that $a \sim a$.
- Let b be any element in A such that $a \sim b$.
- Then, by symmetry, $b \sim a$.
- By transitivity, because $a \sim b$ and $b \sim a$, it follows that $a \sim a$.
- Therefore, \sim is reflexive.

- Find the error in the proof.
- Then find an example of a set A and a relation ∼ on A that is symmetric and transitive, but is not reflexive.

Outline

- Relations
- Properties of Relations
 - Reflexive
 - Symmetric
 - Transitive
 - Antisymmetric
- Equivalence Relations

Equivalence Relations

Definition

An equivalence relation on a set A is a relation \sim on A that is reflexive, symmetric, and transitive.

Examples

Example (Equivalence Relations)

- Define \sim on \mathbb{R} by $x \sim y$ if |x| = |y|.
- Define \sim on \mathbb{R} by $x \sim y$ if $x^2 = y^2$.
- Define \sim on \mathbb{R} by $x \sim y$ if $\cos x = \cos y$.
- Let $d \in \mathbb{N}$ and define \sim on \mathbb{Z} by $a \sim b$ if $d \mid (a b)$.
- Let S be a finite set and define ~ on P(S) by A ~ B if A and B have the same number of elements.